
Engineering Automated Operations for NASA’s Deep Space Network

Eva Bokor, Patricia Santos, Paul Pechkam, Marla Thornton, Patrick Olguin,
Bryan C a d , Manuel Gomez

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91 109

Abstract

The NASA Deep Space Network is unique among space communication
systems. The antennas and signal processing devices must be individually
configured and calibrated before each spacecraft tracking or commanding
activity. T h s preparation requires hundreds of keystrokes as operators issue
directives to the receivers, transmitters, and other devices. Like all computer
keyboard activities, t h s is error prone compared to an automated function,
described here, that reduces both labor required and clerical errors. We place a
special focus on difficult areas that required intensive engmeering effort.

Keywords

automation, temporal dependency network, spacecraft operations

Introduction

The NASA Deep Space Network, or DSN, is an international network of
spacecraft tracking stations. The stations are located at Goldstone, California,
Madrid, Spain, and Canberra, Australia. Regardless of the location of a
spacecraft in the sky, one or more of the DSN’s antennas can observe it. Each
of the antennas is precisely steered to remain pointed at the spacecraft as the
earth rotates. The network supports two-way communication with
interplanetary space missions and some Earth-orbiting missions, including
emergency support of the Space Shuttle. The Jet Propulsion Laboratory
manages and operates the network for NASA from a central operations center
in Pasadena, California.

The DSN is unique among space communication systems in that it is link
configurable. T h s means that for each pass of a spacecraft, a unique collection

Page 1

of antennas, receivers, transmitters, and other signal processing devices can be
assigned to support trackmg. It is ths capablltty to “mix and match” that
creates the need for a high level of human effort by the station operators. The
level of effort required, of course, vanes widely with the type of activity.
Staffing, however, is driven by the activity peaks that occur at launches,
planetary encounters, and landings. To reduce these costs and improve
efficiency, the Jet Propulsion Laboratory began exploring means for
automating routine and repetitive activities in the late 1980’s.

Initial efforts were based on software macros. These collected sets of directives
or commands and executed them as a script. This approach has three
sigtllficant h t a t ions : 1) the inabhty to explicitly specify all possible outcomes,
2) a lack of visibihty into system status if the macro fails whde processing’, and
3) a lack of flexibillty in extracting data and using it to populate variables. To
overcome these h t a t ions , we began to explore a more sophsticated
approach.

The next step in implementation was to develop a representation of the human
operator’s knowledge and actions that could be used by a computer, and then
to acquire that knowledge. A successful prototype led to approval for full-scale
implementation. Performance, however, was marginal, for reasons that d be
discussed later. A second effort resulted in a fully functional system. The
following sections will describe the development of the knowledge
representation, knowledge ensneering, software implementation, and
operational use of this approach to DSN automation.

Knowledge Representation

To fractionate monitor and control activities, four scenarios for routine pre-
and post-track operations were developed. These are:

Trackmg - Measures the angular position and velocity of the spacecraft.

Trackmg and Telemetry - Adds one-way down-link communication from the
spacecraft.

Trackmg, Telemetry, and Command - Adds up-link communication with the
spacecraft.

Cooper, Lynn P., “Operations Automation Using Temporal Dependency Networks,”
Proceedings of the Technology 2001 Conference, San Jose, CA, December 3-5,1991.

Page 2

Trackmg, Telemetry, Command, and Rangmg - Adds measurement of the
distance of the spacecraft from earth.

For any of these four scenarios, the actual equipment used, both hardware and
software, may vary greatly depending upon the spacecraft and antenna
involved. Our implementation takes considerable pains to hde t h s fact from
the operator. The automation assembly presents generic activities using generic
equipment. These generic activities are represented, both graphcally and
conceptually by temporal dependency networks (TDNs).

A TDN is a directed acyclic graph containing the temporal and behavioral
knowledge required to perform a specific task. A sample TDN is illustrated in
Figure 1. Each arc withn the graph represents a precedence relationshp. Each
node represents a discrete task or event that must be performed or deliberately
omitted (granted an exception by the human operator) before the graph can be
further traversed. To further explore TDNs as a knowledge representation
technology we must examine the contents of the nodes, whch are called blocks
in ths application.

Blocks consist of a related set of directives and conditions, as the fundamental
element of control in the DSN. A directive is analogous to a command in
UNIX or DOS. It is a sequence of characters terminated by a carriage return.
Human operators, working at computer consoles, issue directives and receive
confirmation of their execution. The confirmation may be a direct response by
the receiving system, a text message, or a change in a data field displayed on
the console. T h s combination of directive-response is known as positive
closed loop control. Some of the equipment does not have this feature, a fact
that adds to the challenge of automation. In general, when positive closed loop
control is laclung, the automation must be interrupted and a manual operation
is performed to confirm execution of the directive.

Page 3

B S l t e : d t f 2 1 "_ . . 1

Figure 1. Temporal Dependency Network

A block consists of sets of directives that, together, perform a discrete task.
This task may require one or more devices to be controlled and to interact.
The names of the blocks indicate their purpose. Typical block names include:'

Configure Receiver
Move Antenna to Point
Stow Antenna

Along with directives, the blocks contain pre-conditions, which are entry
criteria that must be satisfied before the block can be executed, and post-
conditions, whch are exit criteria for the blocks.

To describe the monitor and control of the DSN at an abstract level, the
activities are divided into pre-track, track, and post-track phases. Pre-track,
typically the most labor intensive, includes allocation, configuration, and
calibration of equipment and movement of the antenna to point at the
spacecraft's position. When the radio link with the spacecraft is acquired, track
phase begins. Whde pre-track activities may take 30-60 minutes, track phase
may last for hours, and even tens of hours. If all goes well, this phase consists

2 Note that whde the block names imply interaction with a single device, in fact, several
devices may interact with a given block.

Page 4

of merely monitoring data flows. Nevertheless, if problems occur or
sophisticated activities are scheduled, thls phase may contain the most complex
human-computer interactions. The post-track phase begins when the
spacecraft goes down over the horizon and communication is lost. The
operator then returns the equipment to the available pool and returns the
antenna to its stowed position.

Knowledge Engineering

Knowledge engineering is the process of capturing human expertise and
transferring it into a form that is usable by a computer program. On ths
project, t h s consisted of interviews with operations personnel and with the
engmeers that built the various devices of the DSN. The knowledge they
supplied helped develop the TDNs and the information contained in the
individual blocks. Finally, programmers convert the information into code.

Several challenges were encountered during the knowledge engmeering. The
first was identification of the appropriate knowledge sources. No unified data
source listed the names of the engineers who b d t the devices. In some cases,
the person had left the Laboratory and maintenance had been handed off to a
person who lacked in-depth understanding.

After the experts were identified, extracting the knowledge provided additional
challenges. Often the engmeers responsible for the devices, and the operators
who used them daily, disagreed on the proper operational procedures.
Differences also existed between individual operator’s views of the devices.
Attempts to resolve the differences with serial meetings were unsuccessful. We
found it more effective to bring all the parties into a meeting and distill a
consensus. It was extremely helpful to have a senior moderator present at
these discussions.

In some instances, issues could only be resolved by “touching the elephant.”
Because the nearest tracking station is a three hour drive from the Laboratory,
much of it on two-lane desert roads, we encountered significant logstic
difficulties.

Page 5

Three Key Challenges

Three characteristics of the DSN make automation particularly challengmg.
The first is the need to configure the equipment string for each spacecraft pass,
as described above. Another is the lack of pre-automation preparation.

In the classical approach to process automation, a prerequisite step is pre-
automation, in whlch the process is completely debugged and the workspace
made as easy as possible for the human operator. Only then is automation
applied to the problem. Financial and technical considerations prevented this
prerequisite step from occurring. Much of the DSN’s equipment is a diverse
collection of agmg, custom-bdt device^.^ E h n a t i o n of equipment would
mean loss of valuable science data as they are s d l used to communicate with
older spacecraft. Replacement would be prohlbitively expensive. The result is
that we worked with systems that were not, strictly speakmg, ready for
automated control.

A third complication came from the requirement that the tracking station
operator must be able to modify the automated monitor and control software
at any time during around-the-clock operation. Thls requirement is driven by
the exigencies of the DSN. The unique demands of monitor and control of
planetary spacecraft imply frequent last-minute changes and work-arounds.
Thus the logic of the automation may need modification when software
professionals are not available. A sigmficant part of the logc must be coded in
a scripting language to permit local, real-time modifications. Other key
information is kept in tables that can be modified with a text editor.

Preliminary Implementation

After the successfid prototype, an operational implementation was created as a
part of an upgrade to the monitor and control workstation. Unfortunately,
performance of the TDN automation portion of the system was margmal and
it was never used for tracking spacecraft. As discussed above, the blocks were
written in a scripting language to facllltate rapid change by persons who are not
professional programmers.

Schonberger, Richard J., and Edward M. Knod, Operations Management, 5th edition, Irwin,

Some of the computers are over 15 years old, while some mechanical devices are 30 years
Burr hdge, IL, pp. 79-80.

old.

Page 6

The first implementation used a product called BasicScript5 as the scripting
engme. T h s was a poor choice for this application, but that was not evident
untd implementation was nearly complete. Each of the approximately 36
scripts resided in a separate frle on disk. The language requires that the entire
application program must reside in a single frle. This meant that repetitive
functionality encapsulated in a subroutine needed an instance for each script.
This created severe configuration management problems. In addition, the
programmers pushed the edge of the performance envelope. Some features of
the language, such as h u t s on the number of variables and the lack of a
function primitive made the implementation difficult.

Nevertheless, in budding thls version, the developers learned a great deal about
the actual requirements and potential design difficulties in the application
domain. The frrst version of the TDN Engme became the classic “throw one
away” described by Brooks.‘

Final Implementation

In the second and final implementation, tool command language: or Tcl, is the
scripting language. The source code for the Tcl interpreter is freely available, so
we were able to extend the language to meet our needs. Several constructs
were added. The resulting language is known as the automation language for
managmg operations or &MO. Although ALMO is a superset of Tcl, the
extensions permit the scripts to be written in a syntax that is very close to the
macro language used in the previous monitor and control system. T h s makes
it easier for trackmg station operators to assist in script writing and
maintenance.

Software Architecture

The software collectively known as the Automation Assembly consists of three
processes. These are the TDN Engine, the Block Engine, and the Block
Manager. The software architecture is dustrated in Figures 2 and 3. The TDN
Engine controls execution of the TDN and is controlled by the monitor and
control workstation. The Block Engine, which is controlled by the TDN
Engme, interprets the ALMO, and interacts with the various

Basic Script is a product of Summit Software, Jamesvdle, NY.
Brooks, Frederick P., The MythicalMan-Month, Addson-Wesley, Reading, MA, 1975, p. 116.
Osterhout, John K., Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA, 1994.

Page 7

telecommunications systems. The Block Manager aids in control of the
multiple versions of TDN blocks and in selection of the appropriate block for
each trackmg instance. The functions of the blocks are further explained in the
next section whlch contains a narrative of the automated trackmg activity.

Spacecraft Tracking Events

Shortly before a monitor and control workstation is scheduled to perform a
track, all necessary data is downloaded to the workstation. Thls includes the
identity of the spacecraft to be tracked, the designated antenna, and
information known as the sequence of events (SOE). The SOE contains the
what, when, and how of each tracking activity. It specifies the equipment to be
used, the time and point of spacecraft rise and set, and parameters needed for
equipment calibration. In addition, it specifies the version of the device
controller software to be used.

All of the signal processing devices in the DSN are computer controlled. This
permits use of different software versions to achleve different technical
objectives withm the same hardware. Changing the version of software
invoked provides the option, for example, of using any one of several versions
of a transmitter for a gven trackmg activity. The flexibdity inherent in thls
technique creates an additional challenge for the Automation Assembly.

The TDNs are written at an abstract level for generic devices and do not have
awareness of the multiple versions that exist in practice. Therefore, the
Automation Assembly requires the intelhgence to select the proper version of
the signal processing device. The Assembly uses an internal table to select the
correct versions of the device controller’s software.

After determining the appropriate block and versions, the TDN Engine uses a
library function to call the Block Manager. The Block Manager responds with
the files containing the blocks. The TDN Engme creates an instance of the
Block Engine for each block. These processes load the block file into memory
and notify the TDN engne when complete. The selected TDN is now ready
for execution. A window showing all key parameters is displayed to the human
operator for approval. When approved, the TDN may be executed.

The operator clicks the Jtart block and each of the initial blocks (those with
Jtart as their predecessor) begm execution. If the block completes successfully,

Page 8

the successor block is started. Note that multiple blocks may have a single
predecessor. T h s provides opportunities for parallelism. If a problem occurs
during block execution, the operator is prompted to intervene. He or she may
correct the problem and restart the block, choose to continue in spite of the
problem, or abort the block. When the terminal block end is reached, the
activity is completed. The operator can now resume manual control or start
another TDN .

Conclusion

Although the DSN provided unique challenges, p r e h n a r y reports indicate
that the effort is successful. The Automation Assembly is now in the final
stages of testing. Results indicate that time to conduct pre-track activities is
reduced by 50% or more. In one test, an operator was able to manage two
spacecraft at the same time, something that is not possible without automation.
Nevertheless, automation is not a substitute for an experienced DSN operator.
When serious anomalies occur, the expertise of the human is needed to correct
the problem or devise a work around.

Acknowledgments

The authors would like to thank Sharon Anthony, Tim Gregor, and John
Jansson of the Goldstone Deep Space Communication Complex (DSCC), Ossi
Larikka and Michael Smith of the Canberra DSCC, and Francisco Jimenez of
the Madrid DSCC for their significant contributions to thls effort. We also
thank Hugh Henry, Supervisor, Network Monitor and Control Group, Jet
Propulsion Laboratory, for h s assistance in the writing of this paper.

The research described in this paper was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, and was sponsored by the
National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process or service by
trade name, trademark, manufacturer, or otherwise, does not constitute or
imply its endorsement by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.

8 Note that blocks can also be executed in a standalone mode, independent of TDNs.

Page 9

.. ’._

Event : Parameter Requests

: Status Messages
i S/S Link Status Queries

Notifications i Operator Requests

Directives
Event
Notifications /

Directives t
Responses

\ Directive
Responses // Control Commands

Parameter Values

Automation Assembly

\\ , / Operator Responses
I Directives

I
I /

J
Event Messages i
Monitor Data .

+D TDN Block -
-

... ...’

Figure 2. Runtime Software Archtecture

Version Request Full Path to
TDN Block File

Version A

Generic Block Name
Subsystem Version TDN Block Filename

V
TDN Block Manager

A
TDN Block Key TDN Block Filename

V

TDN Block
Manager
Database

<

Figure 3. Block Management Architecture

Page 10

